Stephen W. Hawking

Historia del tiempo Del *big bang* a los agujeros negros

Introducción de Carl Sagan

Título original: A Brief History of Time. From the Big Bang to Black Holes. Bantam Books. Nueva York Traducción de Miguel Ortuño

Primera edición en «El libro de bolsillo»: 1990

Tercera edición: 2011 Décima reimpresión: 2019

Diseño de colección: Estudio de Manuel Estrada con la colaboración de Roberto Turégano y Lynda Bozarth
Diseño de cubierta: Manuel Estrada
Fotografía de Juan Manuel Sanz

Reservados todos los derechos. El contenido de esta obra está protegido por la Ley, que establece penas de prisión y/o multas, además de las correspondientes indemnizaciones por daños y perjuicios, para quienes reprodujeren, plagiaren, distribuyeren o comunicaren públicamente, en todo o en parte, una obra literaria, artística o científica, o su transformación, interpretación o ejecución artística fijada en cualquier tipo de soporte o comunicada a través de cualquier medio, sin la preceptiva autorización.

Copyright © Stephen W. Hawking, 1988 Copyright © de la introducción: Carl Sagan, 1988 Copyright © de las ilustraciones: Ron Miller, 1988 © Alianza Editorial, S. A., Madrid, 1990, 2019 Calle Juan Ignacio Luca de Tena, 15 28027 Madrid; www.alianzaeditorial.es

ISBN: 978-84-206-5199-6 Depósito legal: B. 13.399-2011 Printed in Spain

Si quiere recibir información periódica sobre las novedades de Alianza Editorial, envíe un correo electrónico a la dirección: alianzaeditorial@anaya.es

Índice

- 11 Agradecimientos
- 15 Introducción, por Carl Sagan
- 19 1. Nuestra imagen del universo
- 39 2. Espacio y tiempo
- 69 3. El universo en expansión
- 94 4. El principio de incertidumbre
- Las partículas elementales y las fuerzas de la naturaleza
- 132 6. Los agujeros negros
- 7. Los agujeros negros no son tan negros
- 8. El origen y el destino del universo
- 219 9. La flecha del tiempo
- 234 10. La unificación de la física
- 255 11. Conclusión
- 262 Albert Einstein
- 264 Galileo Galilei
- 266 Isaac Newton
- 269 Glosario
- 275 Índice analítico

Agradecimientos

Decidí escribir una obra de divulgación sobre el espacio y el tiempo después de impartir en Harvard las conferencias Loeb de 1982. Ya existía una considerable bibliografía acerca del universo primitivo y de los agujeros negros, en la que figuraban desde libros muy buenos, como el de Steven Weinberg, Los tres primeros minutos del universo, hasta otros muy malos, que no nombraré. Sin embargo, sentía que ninguno de ellos se dirigía realmente a las cuestiones que me habían llevado a investigar en cosmología v en la teoría cuántica: ¿de dónde viene el universo? ¿Cómo y por qué empezó? ¿Tendrá un final, v, en caso afirmativo, cómo será? Éstas son cuestiones de interés para todos los hombres. Pero la ciencia moderna se ha hecho tan técnica que sólo un pequeño número de especialistas son capaces de dominar las matemáticas utilizadas en su descripción. A pesar de ello, las ideas básicas acerca del origen y del destino del universo pueden ser enunciadas sin matemáticas, de tal manera que las personas sin una educación científica las puedan entender. Esto es lo que he intentado hacer en este libro. El lector debe juzgar si lo he conseguido.

Alguien me dijo que cada ecuación que incluyera en el libro reduciría las ventas a la mitad. Por consiguiente, decidí no poner ninguna en absoluto. Al final, sin embargo, sí que incluí una ecuación, la famosa ecuación de Einstein, $E = mc^2$. Espero que esto no asuste a la mitad de mis potenciales lectores.

Aparte de haber sido lo suficientemente desafortunado como para contraer el ALS, o enfermedad de las neuronas motoras, he tenido suerte en casi todos los demás aspectos. La ayuda y apoyo que he recibido de mi esposa, Jane, y de mis hijos, Robert, Lucy y Timmy, me han hecho posible llevar una vida bastante normal y tener éxito en mi carrera. Fui de nuevo afortunado al elegir la física teórica, porque todo está en la mente. Así, mi enfermedad no ha constituido una seria desventaja. Mis colegas científicos han sido, sin excepción, una gran ayuda para mí.

En la primera fase «clásica» de mi carrera, mis compañeros y colaboradores principales fueron Roger Penrose, Robert Geroch, Brandon Carter y George Ellis. Les estoy agradecido por la ayuda que me prestaron y por el trabajo que realizamos juntos. Esta fase fue recogida en el libro *The Large Scale Structure of Spacetime*, que Ellis y yo escribimos en 1973. Desaconsejaría a los lectores de este libro consultar esa obra para una mayor información: es altamente técnica y bastante árida. Espero haber aprendido desde entonces a escribir de una manera más fácil de entender.

En la segunda fase «cuántica» de mi trabajo, desde 1974, mis principales colaboradores han sido Gary Gibbons, Don Page y Jim Hartle. Les debo mucho a ellos y a mis estudiantes de investigación, que me han ayudado muchísimo, tanto en el sentido físico como en el sentido teórico de la palabra. El haber tenido que mantener el ritmo de mis estudiantes ha sido un gran estímulo, y ha evitado, así lo espero, que me quedase anclado en la rutina.

Para la realización de este libro he recibido gran ayuda de Brian Whitt, uno de mis alumnos. Contraje una neumonía en 1985, después de haber escrito el primer borrador. Se me tuvo que realizar una operación de traqueotomía que me privó de la capacidad de hablar, e hizo casi imposible que pudiera comunicarme. Pensé que sería incapaz de acabarlo. Sin embargo, Brian no sólo me ayudó a revisarlo, sino que también me enseñó a utilizar un programa de comunicaciones llamado Living Center ('centro viviente'), donado por Walt Woltosz, de Words Plus Inc., en Sunnyvale, California. Con él puedo escribir libros y artículos, y además hablar con la gente por medio de un sintetizador donado por Speech Plus, también de Sunnyvale. El sintetizador y un pequeño ordenador personal fueron instalados en mi silla de ruedas por David Mason. Este sistema le ha dado la vuelta a la situación: de hecho, me puedo comunicar mejor ahora que antes de perder la voz.

He recibido múltiples sugerencias sobre cómo mejorar el libro, aportadas por gran cantidad de personas que habían leído versiones preliminares. En particular, de Peter Guzzardi, mi editor en Bantam Books, quien me

Stephen Hawking

envió abundantes páginas de comentarios y preguntas acerca de puntos que él creía que no habían sido explicados adecuadamente. Debo admitir que me irrité bastante cuando recibí su extensa lista de cosas que debían ser cambiadas, pero él tenía razón. Estoy seguro de que este libro ha mejorado mucho gracias a que me hizo trabajar sin descanso.

Estoy muy agradecido a mis ayudantes, Colin Williams, David Thomas y Raymond Laflamme; a mis secretarias Judy Fella, Ann Ralph, Cheryl Billington y Sue Masey; y a mi equipo de enfermeras. Nada de esto hubiera sido posible sin la ayuda económica, para mi investigación y los gastos médicos, recibida de Gonville and Caius College, el Science and Engineering Research Council, y las fundaciones Leverhulme, McArthur, Nuffield y Ralph Smith. Mi sincera gratitud a todos ellos.

Stephen Hawking 20 de octubre de 1987

Introducción

Nos movemos en nuestro ambiente diario sin entender casi nada acerca del mundo. Dedicamos poco tiempo a pensar en el mecanismo que genera la luz solar que hace posible la vida, en la gravedad que nos ata a la Tierra y que de otra forma nos lanzaría al espacio, o en los átomos de los que estamos constituidos y de cuya estabilidad dependemos de manera fundamental. Excepto los niños (que no saben lo suficiente como para no preguntar las cuestiones importantes), pocos de nosotros dedicamos tiempo a preguntarnos por qué la naturaleza es de la forma que es, de dónde surgió el cosmos, o si siempre estuvo aquí, si el tiempo correrá en sentido contrario algún día y los efectos precederán a las causas, o si existen límites fundamentales acerca de lo que los humanos pueden saber. Hay incluso niños, y yo he conocido alguno, que quieren saber a qué se parece un agujero negro, o cuál es el trozo más pequeño de la materia, o por qué recordamos el pasado y no el futuro, o cómo es que, si hubo caos antes, existe, aparentemente, orden hoy, y, en definitiva, por qué *hay* un universo.

En nuestra sociedad aún sigue siendo normal para los padres y los maestros responder a estas cuestiones con un encogimiento de hombros, o con una referencia a creencias religiosas vagamente recordadas. Algunos se sienten incómodos con cuestiones de este tipo, porque nos muestran vívidamente las limitaciones del entendimiento humano.

Pero gran parte de la filosofía y de la ciencia han estado guiadas por tales preguntas. Un número creciente de adultos desean preguntar este tipo de cuestiones, y, ocasionalmente, reciben algunas respuestas asombrosas. Equidistantes de los átomos y de las estrellas, estamos extendiendo nuestros horizontes exploratorios para abarcar tanto lo muy pequeño como lo muy grande.

En la primavera de 1974, unos dos años antes de que la nave espacial *Viking* aterrizara en Marte, estuve en una reunión en Inglaterra, financiada por la Royal Society de Londres, para examinar la cuestión de cómo buscar vida extraterrestre. Durante un descanso noté que se estaba celebrando una reunión mucho mayor en un salón adyacente, en el cual entré movido por la curiosidad. Pronto me di cuenta de que estaba siendo testigo de un rito antiquísimo, la investidura de nuevos miembros de la Royal Society, una de las más antiguas organizaciones académicas del planeta. En la primera fila, un joven en una silla de ruedas estaba poniendo, muy lentamente, su nombre en un libro que lleva en sus primeras páginas la firma de Isaac Newton. Cuando al final acabó, hubo una

conmovedora ovación. Stephen Hawking era ya una leyenda.

Hawking ocupa ahora la cátedra Lucasiana de matemáticas de la Universidad de Cambridge, un puesto que fue ocupado en otro tiempo por Newton y después por P.A.M. Dirac, dos célebres exploradores de lo muy grande y lo muy pequeño. Él es su valioso sucesor. Éste, el primer libro de Hawking para el no especialista, es una fuente de satisfacciones para la audiencia profana. Tan interesante como los contenidos de gran alcance del libro es la visión que proporciona de los mecanismos de la mente de su autor. En este libro hay revelaciones lúcidas sobre las fronteras de la física, la astronomía, la cosmología, y el valor.

También se trata de un libro acerca de Dios... o quizás acerca de la ausencia de Dios. La palabra Dios llena estas páginas. Hawking se embarca en una búsqueda de la respuesta a la famosa pregunta de Einstein sobre si Dios tuvo alguna posibilidad de elegir al crear el universo. Hawking intenta, como él mismo señala, comprender el pensamiento de Dios. Y esto hace que sea totalmente inesperada la conclusión de su esfuerzo, al menos hasta ahora: un universo sin un borde espacial, sin principio ni final en el tiempo, y sin lugar para un Creador.

Carl Sagan Universidad de Cornell, Ithaca, Nueva York

Un conocido científico (algunos dicen que fue Bertrand Russell) daba una vez una conferencia sobre astronomía. En ella describía cómo la Tierra giraba alrededor del Sol y cómo éste, a su vez, giraba alrededor del centro de una vasta colección de estrellas conocida como nuestra galaxia. Al final de la charla, una simpática señora ya de edad se levantó y le dijo desde el fondo de la sala: «Lo que nos ha contado usted no son más que tonterías. El mundo es en realidad una plataforma plana sustentada por el caparazón de una tortuga gigante». El científico sonrió ampliamente antes de replicarle, «¿y en qué se apoya la tortuga?» «Usted es muy inteligente, joven, muy inteligente —dijo la señora—. ¡Pero hay infinitas tortugas una debajo de otra!».

La mayor parte de la gente encontraba bastante ridícula la imagen de nuestro universo como una torre infinita de tortugas, pero ¿en qué nos basamos para creer que lo conocemos mejor? ¿Qué sabemos acerca del universo, y cómo hemos llegado a saberlo? ¿De dónde surgió el universo, y adónde va? ¿Tuvo el universo un principio, y, si así fue, qué sucedió con anterioridad a él? ¿Cuál es la naturaleza del tiempo? ¿Llegará éste alguna vez a un final? Avances recientes de la física, posibles en parte gracias a fantásticas nuevas tecnologías, sugieren respuestas a algunas de estas preguntas que desde hace mucho tiempo nos preocupan. Algún día estas respuestas podrán parecernos tan obvias como el que la Tierra gire alrededor del Sol, o, quizás, tan ridículas como una torre de tortugas. Sólo el tiempo (cualquiera que sea su significado) lo dirá.

Ya en el año 340 a.C. el filósofo griego Aristóteles, en su libro De los cielos, fue capaz de establecer dos buenos argumentos para creer que la Tierra era una esfera redonda en vez de una plataforma plana. En primer lugar, se dio cuenta de que los eclipses lunares eran debidos a que la Tierra se situaba entre el Sol y la Luna. La sombra de la Tierra sobre la Luna era siempre redonda. Si la Tierra hubiera sido un disco plano, su sombra habría sido alargada y elíptica a menos que el eclipse siempre ocurriera en el momento en que el Sol estuviera directamente debajo del centro del disco. En segundo lugar, los griegos sabían, debido a sus viajes, que la estrella Polar aparecía más baja en el cielo cuando se observaba desde el sur que cuando se hacía desde regiones más al norte. (Como la estrella Polar está sobre el polo norte, parecería estar justo encima de un observador situado en dicho polo, mientras que para alguien que mirara desde el ecuador parecería estar justo en el

horizonte.) A partir de la diferencia en la posición aparente de la estrella Polar entre Egipto y Grecia, Aristóteles incluso estimó que la distancia alrededor de la Tierra era de 400.000 estadios. No se conoce con exactitud cuál era la longitud de un estadio, pero puede que fuese de unos 200 metros, lo que supondría que la estimación de Aristóteles era aproximadamente el doble de la longitud hoy en día aceptada. Los griegos tenían incluso un tercer argumento en favor de que la Tierra debía de ser redonda, ¿por qué, si no, ve uno primero las velas de un barco que se acerca en el horizonte, y sólo después se ve el casco?

Aristóteles creía que la Tierra era estacionaria y que el Sol, la Luna, los planetas y las estrellas se movían en órbitas circulares alrededor de ella. Creía eso porque estaba convencido, por razones místicas, de que la Tierra era el centro del universo y de que el movimiento circular era el más perfecto. Esta idea fue ampliada por Ptolomeo en el siglo II d.C. hasta constituir un modelo cosmológico completo. La Tierra permaneció en el centro, rodeada por ocho esferas que transportaban a la Luna, el Sol, las estrellas y los cinco planetas conocidos en aquel tiempo, Mercurio, Venus, Marte, Júpiter v Saturno (figura 1.1). Los planetas se movían en círculos más pequeños engarzados en sus respectivas esferas para que así se pudieran explicar sus relativamente complicadas trayectorias celestes. La esfera más externa transportaba a las llamadas estrellas fijas, las cuales siempre permanecían en las mismas posiciones relativas, las unas con respecto de las otras, girando juntas a través del cielo. Lo que había detrás de la última esfera nunca fue descrito con claridad, pero ciertamente no era parte del universo observable por el hombre.

El modelo de Ptolomeo proporcionaba un sistema razonablemente preciso para predecir las posiciones de los cuerpos celestes en el firmamento. Pero, para poder predecir dichas posiciones correctamente, Ptolomeo tenía que suponer que la Luna seguía un camino que la situaba en algunos instantes dos veces más cerca de la Tierra que en otros. ¡Y esto significaba que la Luna debería aparecer a veces con tamaño doble del que usualmente tiene! Ptolomeo reconocía esta inconsistencia, a pesar de lo cual su modelo fue amplia, aunque no universalmente,

Figura 1.1

aceptado. Fue adoptado por la Iglesia cristiana como la imagen del universo que estaba de acuerdo con las Escrituras, y que, además, presentaba la gran ventaja de dejar, fuera de la esfera de las estrellas fijas, una enorme cantidad de espacio para el cielo y el infierno.

Un modelo más simple, sin embargo, fue propuesto, en 1514, por un cura polaco, Nicolás Copérnico. (Al principio, quizás por miedo a ser tildado de hereje por su propia iglesia, Copérnico hizo circular su modelo de forma anónima.) Su idea era que el Sol estaba estacionario en el centro y que la Tierra y los planetas se movían en órbitas circulares a su alrededor. Pasó casi un siglo antes de que su idea fuera tomada verdaderamente en serio. Entonces dos astrónomos, el alemán Johannes Kepler y el italiano Galileo Galilei, empezaron a apoyar públicamente la teoría copernicana, a pesar de que las órbitas que predecía no se ajustaban fielmente a las observadas. El golpe mortal a la teoría aristotélico/ptolemaica llegó en 1609. En ese año, Galileo comenzó a observar el cielo nocturno con un telescopio, que acababa de inventar. Cuando miró el planeta Júpiter, Galileo encontró que éste estaba acompañado por varios pequeños satélites o lunas que giraban a su alrededor. Esto implicaba que no todo tenía que girar directamente alrededor de la Tierra, como Aristóteles y Ptolomeo habían supuesto. (Aún era posible, desde luego, creer que las lunas de Júpiter se movían en caminos extremadamente complicados alrededor de la Tierra, aunque daban la impresión de girar en torno a Júpiter. Sin embargo, la teoría de Copérnico era mucho más simple.) Al mismo tiempo, Johannes Kepler había modificado la teoría de Copérnico, sugiriendo que los planetas no se movían en círculos, sino en elipses (una elipse es un círculo alargado). Las predicciones se ajustaban ahora finalmente a las observaciones.

Desde el punto de vista de Kepler, las órbitas elípticas constituían meramente una hipótesis ad hoc. v. de hecho. una hipótesis bastante desagradable, va que las elipses eran claramente menos perfectas que los círculos. Kepler, al descubrir casi por accidente que las órbitas elípticas se ajustaban bien a las observaciones, no pudo reconciliarlas con su idea de que los planetas estaban concebidos para girar alrededor del Sol atraídos por fuerzas magnéticas. Una explicación coherente sólo fue proporcionada mucho más tarde, en 1687, cuando sir Isaac Newton publicó su Philosophiae Naturalis Principia Mathematica, probablemente la obra más importante publicada en las ciencias físicas en todos los tiempos. En ella, Newton no sólo presentó una teoría de cómo se mueven los cuerpos en el espacio y en el tiempo, sino que también desarrolló las complicadas matemáticas necesarias para analizar esos movimientos. Además. Newton postuló una ley de la gravitación universal, de acuerdo con la cual cada cuerpo en el universo era atraído por cualquier otro cuerpo con una fuerza que era tanto mayor cuanto más masivos fueran los cuerpos y cuanto más cerca estuvieran el uno del otro. Era esta misma fuerza la que hacía que los objetos cayeran al suelo. (La historia de que Newton fue inspirado por una manzana que cavó sobre su cabeza es casi seguro apócrifa. Todo lo que llegó a decir fue que la idea de la gravedad le vino cuando estaba sentado «en disposición contemplativa»,

de la que «únicamente le distrajo la caída de una manzana».) Newton pasó luego a mostrar que, de acuerdo con su ley, la gravedad es la causa de que la Luna se mueva en una órbita elíptica alrededor de la Tierra, y de que la Tierra y los planetas sigan caminos elípticos alrededor del Sol.

El modelo copernicano se despojó de las esferas celestiales de Ptolomeo y, con ellas, de la idea de que el universo tiene una frontera natural. Ya que las «estrellas fijas» no parecían cambiar sus posiciones, aparte de una rotación a través del cielo causada por el giro de la Tierra sobre su eje, llegó a ser natural suponer que las estrellas fijas eran objetos como nuestro Sol, pero mucho más lejanos.

Newton comprendió que, de acuerdo con su teoría de la gravedad, las estrellas deberían atraerse unas a otras, de forma que no parecía posible que pudieran permanecer esencialmente en reposo. ¿No llegaría un determinado momento en el que todas ellas se aglutinarían? En 1691, en una carta a Richard Bentley, otro destacado pensador de su época, Newton argumentaba que esto verdaderamente sucedería si sólo hubiera un número finito de estrellas distribuidas en una región finita del espacio. Pero razonaba que si, por el contrario, hubiera un número infinito de estrellas, distribuidas más o menos uniformemente sobre un espacio infinito, ello no sucedería, porque no habría ningún punto central donde aglutinarse.

Este argumento es un ejemplo del tipo de dificultad que uno puede encontrar cuando se discute acerca del infinito. En un universo infinito, cada punto puede ser